Table of Contents

Expert Sleepers Disting Ex

width:
HP
depth:
mm
12v:
mA
-12v:
mA
5v:
mA
rack:
BFE

A power multi-tool. It can function as either a single unit or as two independent Disting mk. 4 modules. I also have the MIDI breakout installed. I tend to use this module either as an effect or in place of some utility I don't have in hardware.

See below for information on the available algorithms.

Single-mode algorithms

1: Matrix mixer

2: Augustus Loop

3: SD multisample

4: SD 6 triggers

5: WAV recorder

6: Multi switch

7: Looper

8: Dream Machine

9: Filter bank

10: Poly wavetable

11: Granulator

12: Multi FX

13: Poly exciter

14: Quad envelope

15: Convolver

16: Chord engine

17: Microtuner

18: Tracker

19: Macro oscillator

Emulation of Mutable Instruments Braids.

20: Resonator

Emulation of Mutable Instruments Rings.

21: Macro Oscillator 2

Emulation of Mutable Instruments Plaits.

22: MIDI player

Dual-mode algorithms

Entries followed by an asterisk are different from corresponding algorithm in the Disting mk. 4.

Inputs
X
Y
Z
Outputs
A
B

A-1: Precision adder

Inputs
X Input $X$
Y Input $Y$
Z Determines $offset$
Outputs
A $X + Y + offset$ or $X + offset$
B $X - Y - offset$ or $Y \pm offset$

A-2: Four quadrant multiplier

Inputs
X Input $X$
Y Input $Y$
Z Determines $scale$
Outputs
A $X\cdot Y\cdot scale$
B $-X\cdot Y\cdot scale$

A-3: Full-wave rectifier

Inputs
X Input $X$
Y Input $Y$
Z Selects mode
Outputs
A $\lvert X+Y\rvert$ or $\lvert X\rvert$
B $\lvert X-Y\rvert$ or $\lvert Y\rvert$

Available modes are “independent” (Z negative?) and “combination” (Z positive?).

A-4: Minimum/maximum

When Z is higher than 2.5V, the outputs are active; when Z drops below -1.5V, the outputs are frozen. “HI” or “LO” is displayed briefly on the corresponding state change. If one input is held at zero or disconnected, the module behaves as a half-wave rectifier.

Inputs
X input $X$
Y input $Y$
Z gate
Outputs
A $\min(X, Y)$
B $\max(X, Y)$

A-5: Linear/exponential converter

Provides both a linear-exponential and an exponential-linear converter. This is useful for, say, interfacing Eurorack V/octave gear with Hz/V synths or for using a VCO's exponential FM input as a linear FM input.

Inputs
X exponential input
Y linear input
Z Hz/V scale, centered on 1kHz
Outputs
A $2^X\cdot scale$
B $\log_2(Y/scale)$

A-6: Quantizer

Inputs
X input $X$
Y transpose (Z positive) or trigger (Z negative)
Z selects scale & function of Y
Outputs
A $quantized(X)$
B trigger on note change

A-7: Comparator

Inputs
X input
Y input
Z hysteresis
Outputs
A 5V when X > Y
B inverse of A

A-8: Dual waveshaper

Inputs
X input $X$
Y input $Y$
Z gain
Outputs
A $shaped(X)$
B $shaped(Y)$

Each channel can use one of two waveshaping functions: wavefolder (0) or triangle-to-sine (1).

B-1: Sample and hold

Inputs
X input $X$
Y trigger
Z slew rate; press for sampling
Outputs
A $A=X$ when $Y\geq 1V$
B noise ($\pm 8V$)

B-2: Slew rate limiter

Inputs
X input $X$
Y input $Y$
Z slew rate
Outputs
A $limited(X+Y)$ or $limited(X)$
B $limited(X+Y)$ or $limited(Y)$

B-3: Pitch and envelope tracker

Inputs
X input $X$
Y input $Y$
Z envelope slew rate
Outputs
A V/octave pitch derived from $X$, plus $Y$
B envelope derived from $X$

B-4: Clockable delay/echo

Inputs
X input $X$
Y clock in
Z feedback
Outputs
A depends on mode
B depends on mode

B-5: LFO

Inputs
X Hz/V frequency
Y waveshape
Z tune
Outputs
A saw → sine → triangle
B pulse → square → pulse

B-6: Clockable LFO

Inputs
X clock in
Y waveshape
Z clock multiplier/divider
Outputs
A saw → sine → triangle
B pulse → square → pulse

B-7: VCO with linear FM

Inputs
X V/octave
Y linear FM
Z tune $\pm 0.5$ octaves
Outputs
A selectable output waveform
B selectable output waveform

The waveforms of outputs A and B can be independently set. Options are triangle, sine, square, saw, sub-octave square, and MIDI gate.

B-8: VCO with waveshaping

Inputs
X V/octave
Y waveshape/PWM
Z tune $\pm 0.5$ octaves or sync
Outputs
A selectable output waveform
B selectable output waveform

As with the preceding algorithm, output waveforms A and B can be set independently. Waveform A options are triangle/saw, triangle/saw, square/pulse, triangle/saw, and square/pulse; waveform B options are square/pulse, sub-octave square, sub-octave/square, MIDI gate, and MIDI gate. The reason for the duplicates is unclear.

C-1: Counter

Inputs
X clock in
Y reset in
Z (press) resets to step 1
Outputs
A clock out
B clock out

Not what I would call a counter; rather, it's an external reset generator for sequencers without a reset input. An internal step counter is maintained, and when a trigger is received on input Y, the module generates a rapid burst of extra clocks.

I wonder if I could use this as a trigger multiplier. What happens if I press Z to reset the internal count and then send a reset signal?

C-2: Voltage-controlled delay line

Inputs
X audio input
Y delay time
Z feedback (bipolar)
Outputs
A delay output
B (50-50?) wet/dry mix

C-3: Clockable ping-pong delay (Z feedback)

Inputs
X audio input
Y clock in
Z feedback
Outputs
A left output
B right output

C-4: Clockable ping-pong delay (Z input pan)

Inputs
X audio input
Y clock in
Z input pan
Outputs
A left output
B right output

C-5: Resonator

Inputs
X audio or trigger input
Y center frequency (V/octave)
Z gain; (press) strike
Outputs
A audio output
B envelope of audio output

Can be used either as a filter or as an analog drum synth. In the latter case, input X should be a trigger rather than audio.

The 0 V point for the pitch is C3 (130.81 Hz).

C-6: Vocoder

Inputs
X modulator input
Y carrier input
Z decay time
Outputs
A audio output
B envelope output

Use low Z (negative) for most intelligible speech.

C-7: Phaser

Inputs
X audio input
Y sweep
Z feedback (bipolar)
Outputs
A (50-50?) wet/dry mix
B phase-shifted signal

C-8: Bit crusher

Inputs
X signal input
Y sample rate or R input if stereo
Z bit reduction
Outputs
A signal output
B comparator or R output if stereo

Two bit reduction options are available, set by Z: in type I, the input is converted to a 16-bit word and the lower bits dropped; in type II, the input is integer divided by a given factor.

When Z is negative, negative inputs are flipped positive, processed, and flipped back. Reduction types can be set separately for positive and negative portions of the input cycle.

D-1: DJ filter

Inputs
X L input
Y R input
Z filter cutoff
Outputs
A L output
B R output

D-2: Tape delay

Inputs
X audio input
Y tape speed
Z feedback
Outputs
A output according to mode
B output according to mode

The Y voltage-to-speed is scaled like so: -4 V = 1/2 speed, 0 V = 1x speed, and +8 V = 2x speed.

Outputs can follow one of three modes, selected by parameter 3:

D-3: Waveform animator

Inputs
X audio input
Y threshold
Z separation
Outputs
A animated output
B square waves output

D-4: State-variable filter

Inputs
X audio input
Y cutoff frequency
Z filter type
Outputs
A filtered output (LP→BP→HP)
B filtered output (HP→BP→LP)

D-5: LP/HP filter

Inputs
X audio input
Y filter cutoff
Z filter resonance
Outputs
A LPF output
B HPF output

D-6: LP/BP filter

Inputs
X audio input
Y filter cutoff
Z filter resonance
Outputs
A LPF output
B BPF output

D-7: BP/HP filter

Inputs
X audio input
Y filter cutoff
Z filter resonance
Outputs
A BPF output
B HPF output

D-8: BP/notch filter

Inputs
X audio input
Y filter cutoff
Z filter resonance
Outputs
A BPF output
B notch filter output

E-1: AR envelope

Inputs
X trigger input
Y trigger input
Z envelope times; (press) trigger
Outputs
A envelope output
B envelope output

This is not a dual envelope generator; a trigger received on either X or Y will cause both A and B to output the same envelope. However, each can be attenuverted separately via parameters 2 and 3. With parameter 2 set to 41, output A becomes an end-of-cycle trigger (10 ms at 5 V).

Trigger mode (parameter 0) sets the envelope type. In trigger mode 0, the envelope will rise and stay high as long as the trigger is high (AR). In trigger mode 1, the envelope will decay immediately after the attack (AD). In trigger mode 2, the envelope will continually complete attack/decay cycles as long as the trigger is high (looped AD). Think the gate, trigger, and loop modes of the Pip Slope, respectively.

E-2: AR envelope & VCA

Inputs
X trigger input
Y VCA (signal) input
Z envelope times; (press) trigger
Outputs
A envelope output
B VCA output

Trigger modes (parameter 0) 0–2 are as in E-1: AR envelope. These are repeated for modes 3–5 and 6–8 except the trigger source is taken from the tracked envelope of input X and input Y, respectively.

E-3: Dual AR envelope

Inputs
X trigger A
Y trigger B
Z envelope times; (press) trigger)
Outputs
A envelope A
B envelope B

Unlike E-1: AR envelope, this algorithm generates two independently-triggered envelopes. Though they share timing, trigger mode, and attack and release shapes, their attenuversion and offsets can be set separately.

Trigger modes are the same as for E-1: AR envelope.

E-4: Stereo compressor

Inputs
X L input
Y R input
Z compression ratio
Outputs
A L output
B R output

E-5: Sidechain compressor

Inputs
X L input
Y R input
Z side-chain input
Outputs
A L output
B R output

If input Z is audio, the Z knob should be set to center.

E-6: Mono compressor

Inputs
X audio input
Y side-chain input
Z compression ratio
Outputs
A audio output
B gain reduction output

E-7: Euro to Buchla converter

Inputs
X V/octave
Y gate in
Z tune $\pm 0.5$ octaves
Outputs
A 1.2 V/octave output
B gate/trigger output

E-8: Buchla to Euro converter

Inputs
X 1.2 V/octave input
Y gate/trigger input
Z tune $\pm 0.5$ octaves
Outputs
A 1 V/octave output
B trigger output

F-1: Clockable AD envelope (with mute)

Inputs
X clock in
Y mute in
Z envelope shape
Outputs
A envelope output
B envelope output

Z varies the envelope shape from short-attack/long-decay to long-attack/short-decay. A and B output the same envelope but can be attenuverted separately.

F-2: Clockable AD envelope (with gate)

Inputs
X clock in
Y gate in
Z envelope shape
Outputs
A envelope output
B envelope output

The envelope is looped once per clock cycle as long as the gate is high.

F-3: Clockable AD envelope (with trigger)

Inputs
X clock in
Y trigger in
Z envelope shape
Outputs
A envelope output
B envelope output

F-4: Clockable AD envelope & VCA

Inputs
X clock in
Y VCA (signal) in
Z envelope shape
Outputs
A envelope output
B VCA output

The envelope is continuously output on each clock cycle.

F-5: Shift register (random CVs)

Inputs
X clock in
Y modify
Z randomness
Outputs
A unipolar output
B bipolar output or trigger

F-6: Shift register (quantized CVs)

Inputs
X clock in
Y modify
Z randomness
Outputs
A quantized CV
B trigger output

F-7: Shift register (triggers)

Inputs
X clock in
Y modify
Z randomness; (press) modify sequence)
Outputs
A trigger on high bit
B trigger on low bit

F-8: Shift register (dual triggers)

Inputs
X clock in
Y modify
Z randomness
Outputs
A trigger A
B trigger B

G-1: ES-1 emulation

Inputs
X input $X$
Y input $Y$
Z trim
Outputs
A output A
B output B

G-2: ES-2 emulation

Inputs
X input $X$
Y input $Y$
Z trim
Outputs
A output A
B output B

G-3: Pitch reference

Generates sine and square waves at a configurable pitch. When the pitch is adjusted, it's shown on the display as its normal name and then MIDI note number.

Inputs
X n/a
Y n/a
Z output amplitudes
Outputs
A sine output
B square output

G-4: Frequency reference

Inputs
X n/a
Y n/a
Z output amplitudes
Outputs
A sine output
B square output

G-5: Tuner

Chromatic tuner with configurable reference pitch.

Inputs
X input signal
Y n/a
Z amplitude of B
Outputs
A copy of X
B sine wave at the tracked pitch

G-6: Clock

Inputs
X clock in
Y run/stop input
Z ratchet; (press) start/stop or tap tempo
MIDI yes
Outputs
A clock out
B clock out
MIDI yes

G-7: MIDI/CV

Inputs
X n/a
Y n/a
Z n/a
Outputs
A pitch CV
B gate

G-8: CV/MIDI

Inputs
X pitch CV
Y gate
Z mod wheel or velocity CV
Outputs
A X
B Y

H-1: Crossfade/pan

Inputs
X
Y
Z
Outputs
A
B

H-2: Dual sample and hold*

A dual sample-and-hold/track-and-hold that can be operated in six different configurations.

Inputs
X input 1 trigger A
Y input 2 trigger B
Z trigger input
Outputs
A X (when Z > 1V) Z (when X > 1V)
B Y (when Z > 1V) Z (when X > 1V)

H-3: Dual quantizer (Z scale)

Inputs
X
Y
Z
Outputs
A
B

H-4: Dual quantizer

Inputs
X
Y
Z
Outputs
A
B

H-5: Dual Euclidean patterns

Inputs
X
Y
Z
Outputs
A
B

H-6: Dual delayed pulse generator

Inputs
X
Y
Z
Outputs
A
B

H-7: Noise

Inputs
X
Y
Z
Outputs
A
B

H-8: Quantizer 2

Inputs
X
Y
Z
Outputs
A
B

I-1: Audio playback

Inputs
X
Y
Z
Outputs
A
B

I-2: Clocked audio playback

Inputs
X
Y
Z
Outputs
A
B

I-3: Audio playback with V/oct

Inputs
X
Y
Z
Outputs
A
B

I-4: Audio playback with Z speed

Inputs
X
Y
Z
Outputs
A
B

I-5: Audio playback with reverse

Inputs
X
Y
Z
Outputs
A
B

I-6: Audio playback with scrub

Inputs
X
Y
Z
Outputs
A
B

I-7: Dual audio playback

Inputs
X
Y
Z
Outputs
A
B

I-8: Dual audio playback with Z speed

Inputs
X
Y
Z
Outputs
A
B

J-1: MIDI file playback (clocked)

Inputs
X
Y
Z
Outputs
A
B

J-2: Multisample 2 audio playback

Inputs
X
Y
Z
Outputs
A
B

J-3: MIDI file playback (free-running)

Inputs
X
Y
Z
Outputs
A
B

J-4: Audio playback with end CV

Inputs
X
Y
Z
Outputs
A
B

J-5: Oscilloscope*

Inputs
X
Y
Z
Outputs
A
B

J-6: Multisample audio playback

Inputs
X
Y
Z
Outputs
A
B

J-7: Mono audio recorder

Inputs
X
Y
Z
Outputs
A
B

J-8: Audio playback with crossfade

Inputs
X
Y
Z
Outputs
A
B

K-1: Wavetable VCO

Inputs
X
Y
Z
Outputs
A
B

K-2: Clockable wavetable LFO

Inputs
X
Y
Z
Outputs
A
B

K-3: Wavetable waveshaper

Inputs
X
Y
Z
Outputs
A
B

K-4: Clockable wavetable envelope

Inputs
X
Y
Z
Outputs
A
B

K-5: Programmable quantizer

Inputs
X
Y
Z
Outputs
A
B

K-6: 24dB/oct VCF*

Inputs
X
Y
Z
Outputs
A
B

K-7: Delay stereo*

Behaves exactly as the Disting's “stereo clockable SD delay” but does not use the SD card. The maximum delay time is 10.9 seconds.

It's unclear where the “clockable” part comes in. With stereo inputs and Z as the feedback control, there are no inputs available for a clock signal.

Inputs
X input L
Y input R
Z feedback
Outputs
A output L
B output R

K-8: Delay stereo clk*

Inputs
X
Y
Z
Outputs
A
B

L-1: Stereo reverb

Inputs
X
Y
Z
Outputs
A
B

L-2: Mono-to-stereo reverb

Inputs
X
Y
Z
Outputs
A
B

L-3: Dual reverb

Inputs
X
Y
Z
Outputs
A
B

L-4: Dual vowel filter

Inputs
X
Y
Z
Outputs
A
B

L-5: Stereo chorus

Inputs
X
Y
Z
Outputs
A
B

L-6: Mono chorus

Inputs
X
Y
Z
Outputs
A
B

L-7: Mixer

Inputs
X
Y
Z
Outputs
A
B

L-8: Gate

Inputs
X
Y
Z
Outputs
A
B

M-1: Delayed LFO

Inputs
X
Y
Z
Outputs
A
B

M-2: Scaled LFO

Inputs
X
Y
Z
Outputs
A
B

M-3: Logic

Performs logical operations on the X and Y inputs, outputting either 0 or 5V. Comparator threshold and hysteresis can be configured for both inputs. Output B can be equal to A, the inverse of A, or be independent.

Inputs
X input
Y input
Z operation select for output A
Outputs
A output
B output

M-4: Half-wave rectifier

Inputs
X
Y
Z
Outputs
A
B

M-5: Stereo filter

Inputs
X
Y
Z
Outputs
A
B

M-6: Stereo tape delay

Inputs
X
Y
Z
Outputs
A
B

M-7: Granular pitch shifter

Inputs
X
Y
Z
Outputs
A
B

M-8: Chaos

Inputs
X
Y
Z
Outputs
A
B

N-1: Switch

Inputs
X
Y
Z
Outputs
A
B

N-2: Rotary

Inputs
X
Y
Z
Outputs
A
B

N-3: Attenuverter/offset

Inputs
X
Y
Z
Outputs
A
B

N-4: Low-pass gate

Inputs
X
Y
Z
Outputs
A
B

N-5: Pulsar VCO

Inputs
X
Y
Z
Outputs
A
B

N-6: Phase shifter

Inputs
X
Y
Z
Outputs
A
B

N-7: Frequency shifter*

Inputs
X
Y
Z
Outputs
A
B

N-8: Dual VCO*

Inputs
X
Y
Z
Outputs
A
B

Resources