formulas

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

formulas [2023-10-29 21:50] – created asdfformulas [2023-12-17 21:57] (current) – [Electronics] asdf
Line 16: Line 16:
 $$Z_L = j\omega L$$ $$Z_L = j\omega L$$
  
-Given two resistors $R_1$ and $R_2$ with $R_2=nR_!$, the parallel combination has total resistance $\frac{nR1}{n+1}=\frac{R2}{n+1}$. +Given two resistors $R_1$ and $R_2$ with $R_2=nR_1$, the parallel combination has total resistance $\frac{nR1}{n+1}=\frac{R2}{n+1}$.  
 + 
 +<figure center|passive_mixer> 
 +{{ ::passive-avg.png?400 |}} 
 +<caption>Passive mixer</caption> 
 +</figure> 
 + 
 +$V_*$ in {{ref>passive_mixer}} is related to $V_A$ and $V_B$ by: $$V_* = \frac{V_A\cdot R_B + V_B\cdot R_A}{R_A+R_B}$$ Note that each input voltage is weighted by the resistor //opposite// $V_*$. This generalizes to $n$ voltages and $n$ resistors as: $$V_*=\left(\sum_{k=1}^n \frac{V_k}{R_k}\right) \cdot\left(\frac{1}{\sum_{k=1}^n \frac{1}{R_k}}\right),$$ that is, the short-circuit current times the total parallel resistance
  
 ==== Ebers-Moll BJT model ==== ==== Ebers-Moll BJT model ====
  • formulas.1698616221.txt.gz
  • Last modified: 2023-10-29 21:50
  • by asdf